Forward and Reverse Converters and Moduli Set Selection in Signed-Digit Residue Number Systems
نویسندگان
چکیده
This paper presents an investigation into using a combination of two alternative digital number representations; the residue number system (RNS) and the signed-digit (SD) number representation in digital arithmetic circuits. The combined number system is called RNS/SD for short. Since the performance of RNS/SD arithmetic circuits depends on the choice of the moduli set (a set of pairwise prime numbers), the purpose of this work is to compare RNS/SD number systems based on different sets. Five specific moduli sets of different lengths are selected. Moduli-setspecific forward and reverse RNS/SD converters are introduced for each of these sets. A generic conversion technique for moduli sets consisting of any number of elements is also presented. Finite impulse response (FIR) filters are used as reference designs in order to evaluate the performance of RNS/SD processing. The designs are evaluated with respect to delay and circuit area in a commercial 0.13 μm CMOS process. For the case of FIR filters it is shown that generic moduli sets with five or six moduli results in designs with the best area×delay products. A. Persson Centre for Research on Embedded Systems (CERES), Halmstad University, Sweden e-mail: [email protected] L. Bengtsson (B) Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden e-mail: [email protected]
منابع مشابه
Low Complexity Converter for the Moduli Set {2^n+1,2^n-1,2^n} in Two-Part Residue Number System
Residue Number System is a kind of numerical systems that uses the remainder of division in several different moduli. Conversion of a number to smaller ones and carrying out parallel calculations on these numbers will increase the speed of the arithmetic operations in this system. However, the main factor that affects performance of system is hardware complexity of reverse converter. Reverse co...
متن کاملOverflow Detection in Residue Number System, Moduli Set {2n-1,2n,2n+1}
Residue Number System (RNS) is a non-weighted number system for integer number arithmetic, which is based on the residues of a number to a certain set of numbers called module set. The main characteristics and advantage of residue number system is reducing carry propagation in calculations. The elimination of carry propagation leads to the possibility of maximizing parallel processing and reduc...
متن کاملArithmetic Circuits Combining Residue and Signed-Digit Representations
This paper discusses the use of signed-digit representations in the implementation of fast and efficient residue-arithmetic units. Improvements to existing signed-digit modulo adders and multipliers are suggested and new converters for the residue signed-digit number system are described for the moduli . By extending an existing efficient signed-digit adder design to handle modulo operations, w...
متن کاملAn Improved RNS Reverse Converter in Three-Moduli Set
Residue Number System (RNS) is a carry-free and non-weighed integer system. In this paper an improved three-moduli set in reverse converter based on CRT algorithm is proposed. CRT algorithm can perform a better delay and hardware implementation in modules via other algorithms. This moduli is based on p that covers a wide range on modules and supports the whole range of its modules in dynamic r...
متن کاملEfficient Reverse Converter for Three Modules Set {2^n-1,2^(n+1)-1,2^n} in Multi-Part RNS
Residue Number System is a numerical system which arithmetic operations are performed parallelly. One of the main factors that affects the system’s performance is the complexity of reverse converter. It should be noted that the complexity of this part should not affect the earned speed of parallelly performed arithmetic unit. Therefore in this paper a high speed converter for moduli set {2n-1, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing Systems
دوره 56 شماره
صفحات -
تاریخ انتشار 2009